Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Immunol ; 13: 1076724, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2198914

RESUMEN

Background: Low-density granulocytes (LDGs) are a distinct subset of neutrophils whose increased abundance is associated with the severity of COVID-19. However, the long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on LDG levels and phenotypic alteration remain unexplored. Methods: Using participants naïve to SARS-CoV-2 (NP), infected with SARS-CoV-2 with no residual symptoms (NRS), and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC), we compared LDG levels and their phenotype by measuring the expression of markers for activation, maturation, and neutrophil extracellular trap (NET) formation using flow cytometry. Results: The number of LDGs was elevated in PPASC compared to NP. Individuals infected with SARS-CoV-2 (NRS and PPASC) demonstrated increased CD10+ and CD16hi subset counts of LDGs compared to NP group. Further characterization of LDGs demonstrated that LDGs from COVID-19 convalescents (PPASC and NRS) displayed increased markers of NET forming ability and aggregation with platelets compared to LDGs from NP, but no differences were observed between PPASC and NRS. Conclusions: Our data from a small cohort study demonstrates that mature neutrophils with a heightened activation phenotype remain in circulation long after initial SARS-CoV-2 infection. Persistent elevation of markers for neutrophil activation and NET formation on LDGs, as well as an enhanced proclivity for platelet-neutrophil aggregation (PNA) formation in COVID-19 convalescent individuals may be associated with PPASC prognosis and development.


Asunto(s)
COVID-19 , Humanos , Estudios de Cohortes , COVID-19/metabolismo , SARS-CoV-2 , Granulocitos/metabolismo , Fenotipo
3.
Eur J Immunol ; 52(3): 484-502, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1555185

RESUMEN

To better understand the mechanisms at the basis of neutrophil functions during SARS-CoV-2, we studied patients with severe COVID-19 pneumonia. They had high blood proportion of degranulated neutrophils and elevated plasma levels of myeloperoxidase (MPO), elastase, and MPO-DNA complexes, which are typical markers of neutrophil extracellular traps (NET). Their neutrophils display dysfunctional mitochondria, defective oxidative burst, increased glycolysis, glycogen accumulation in the cytoplasm, and increase glycogenolysis. Hypoxia-inducible factor 1α (ΗΙF-1α) is stabilized in such cells, and it controls the level of glycogen phosphorylase L (PYGL), a key enzyme in glycogenolysis. Inhibiting PYGL abolishes the ability of neutrophils to produce NET. Patients displayed significant increases of plasma levels of molecules involved in the regulation of neutrophils' function including CCL2, CXCL10, CCL20, IL-18, IL-3, IL-6, G-CSF, GM-CSF, IFN-γ. Our data suggest that metabolic remodelling is vital for the formation of NET and for boosting neutrophil inflammatory response, thus, suggesting that modulating ΗΙF-1α or PYGL could represent a novel approach for innovative therapies.


Asunto(s)
COVID-19/inmunología , COVID-19/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , SARS-CoV-2 , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/sangre , Estudios de Casos y Controles , Estudios de Cohortes , Citocinas/sangre , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Femenino , Glucógeno Fosforilasa de Forma Hepática/sangre , Granulocitos/inmunología , Granulocitos/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/sangre , Masculino , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Persona de Mediana Edad , Activación Neutrófila , Peroxidasa/sangre , Estallido Respiratorio , Índice de Severidad de la Enfermedad
4.
Cells ; 10(10)2021 09 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1438528

RESUMEN

The coronavirus disease 2019 (COVID-19) is related to enhanced production of NETs, and autoimmune/autoinflammatory phenomena. We evaluated the proportion of low-density granulocytes (LDG) by flow cytometry, and their capacity to produce NETs was compared with that of conventional neutrophils. NETs and their protein cargo were quantified by confocal microscopy and ELISA. Antinuclear antibodies (ANA), anti-neutrophil cytoplasmic antibodies (ANCA) and the degradation capacity of NETs were addressed in serum. MILLIPLEX assay was used to assess the cytokine levels in macrophages' supernatant and serum. We found a higher proportion of LDG in severe and critical COVID-19 which correlated with severity and inflammatory markers. Severe/critical COVID-19 patients had higher plasmatic NE, LL-37 and HMGB1-DNA complexes, whilst ISG-15-DNA complexes were lower in severe patients. Sera from severe/critical COVID-19 patients had lower degradation capacity of NETs, which was reverted after adding hrDNase. Anti-NET antibodies were found in COVID-19, which correlated with ANA and ANCA positivity. NET stimuli enhanced the secretion of cytokines in macrophages. This study unveils the role of COVID-19 NETs as inducers of pro-inflammatory and autoimmune responses. The deficient degradation capacity of NETs may contribute to the accumulation of these structures and anti-NET antibodies are related to the presence of autoantibodies.


Asunto(s)
Autoinmunidad , COVID-19/sangre , COVID-19/inmunología , Trampas Extracelulares/inmunología , Inmunidad Humoral , Inflamación , Neutrófilos/inmunología , Anticuerpos Antinucleares , Péptidos Catiónicos Antimicrobianos/sangre , Autoanticuerpos/metabolismo , Estudios Transversales , Citocinas/metabolismo , Citocinas/farmacología , Citometría de Flujo , Granulocitos/metabolismo , Proteína HMGB1/sangre , Voluntarios Sanos , Humanos , Microscopía Confocal , Monocitos/citología , Neutrófilos/citología , SARS-CoV-2 , Ubiquitinas/farmacología , Catelicidinas
5.
Arterioscler Thromb Vasc Biol ; 41(9): 2509-2511, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1405256
6.
Front Immunol ; 12: 695972, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1339498

RESUMEN

COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19 that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1+ G-MDSC (Arg+G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg+G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.


Asunto(s)
COVID-19/inmunología , Granulocitos/inmunología , Células Supresoras de Origen Mieloide/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Antivirales/administración & dosificación , Arginasa/antagonistas & inhibidores , Arginasa/metabolismo , Arginina/administración & dosificación , Arginina/sangre , Arginina/metabolismo , Infecciones Asintomáticas , COVID-19/sangre , COVID-19/diagnóstico , Estudios de Casos y Controles , Quimioterapia Combinada/métodos , Inhibidores Enzimáticos/administración & dosificación , Femenino , Granulocitos/metabolismo , Voluntarios Sanos , Humanos , Interferón Tipo I/metabolismo , Masculino , Persona de Mediana Edad , Células Supresoras de Origen Mieloide/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal/inmunología , Linfocitos T/inmunología , Tratamiento Farmacológico de COVID-19
7.
Cell Biol Int ; 45(7): 1533-1545, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1141294

RESUMEN

Polymorphonuclear neutrophilic granulocytes (PMNs) are the largest proportion of leukocytes in adult human blood that perform numerous functions, including phagocytosis, degranulation, generation of reactive oxygen species, and NETosis. Excessive neutrophil activity associates with hyperinflammation and tissue damage during pathologies such as inflammatory bowel disease, diabetes mellitus, tuberculosis, and coronavirus disease 2019. Nicotinic acetylcholine receptors (nAChRs) can modulate immune cells, including neutrophils, functions, therefore, nAChR ligands are considered as the potent agents for therapy of inflammation. Earlier it was shown, that about 30% of PMNs from the acute inflammatory site responded to nicotine by calcium spikes. In this study, we studied the generation of calcium spikes in murine granulocytes with different maturity level (evaluated by Gr-1 expression) isolated from bone marrow in response to ligands of nAChRs in control and under chronic nicotine consumption. It was found that nearly 20%-25% cells in the granulocyte population responded to nicotine or selective antagonists of different type of nAChRs (α-cobratoxin, GIC, and Vc1.1). We demonstrated that in the control group Ca2+ -mobilizing activity was regulated through α7 and α9α10 nAChRs in immature granulocytes (Gr-1int ), whereas in mature granulocytes (Gr-1hi ) it was regulated through α7, α3ß2, and α9-contained nAChRs. Sensitivity of PMNs to nicotine depended on their maturity level after chronic nicotine consumption. Gr-1int cells responded to nicotine through α7 and α9-contained nAChRs, while Gr-1hi did not respond to nicotine. Thus, calcium response to nAChR ligands in bone marrow PMNs depends on their maturity level.


Asunto(s)
Antígenos Ly/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Colinérgicos/farmacología , Granulocitos/efectos de los fármacos , Receptores Nicotínicos/efectos de los fármacos , Animales , Células de la Médula Ósea/metabolismo , Células Cultivadas , Granulocitos/metabolismo , Ligandos , Masculino , Ratones Endogámicos BALB C , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo
8.
Int J Infect Dis ; 99: 381-385, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-695769

RESUMEN

BACKGROUND: The reasons why some patients with COVID-19 develop pneumonia and others do not are unclear. To better understand this, we used multiparameter flow cytometry to profile circulating leukocytes from non-immunocompromised adult patients with PCR-proven COVID-19 and specifically compared those with mild symptoms with those who had developed pneumonia. METHODS: Using clinically validated antibody panels we studied leukocytes from 29 patients with PCR-proven COVID-19. Ten were hypoxic requiring ventilatory support, eleven were febrile but otherwise well, and eight were convalescing having previously required ventilatory support. Additionally, we analysed patients who did not have COVID-19 but received ventilatory support for other reasons. We examined routine Full Blood Count (FBC) specimens that were surplus to routine diagnostic requirements; normal ranges were established in a historic group of healthy volunteers. FINDINGS: We observed striking and unexpected differences in cells of the innate immune system. Levels of CD11b and CD18, which together comprise Complement Receptor 3 (CR3), were increased in granulocytes and monocytes from hypoxic COVID-19 patients, but not in those with COVID-19 who remained well, or in those without COVID-19 but ventilated for other reasons. Granulocyte and monocyte numbers were unchanged, however Natural Killer (NK) cell numbers were two-fold higher than normal in COVID-19 patients who remained well. INTERPRETATION: CR3 is central to leukocyte activation and subsequent cytokine release in response to infection. It is also a fibrinogen receptor, and its over-expression in granulocytes and monocytes of patients with respiratory failure tables it as a candidate effector of both the thrombotic and inflammatory features of COVID-19 pneumonia, and both a biomarker of impending respiratory failure and potential therapeutic target. NK cells are innate immune cells that retain immunological memory. Rapid expansion of memory NK cells targeting common antigens shared with other Coronaviruses may explain why most patients with COVID-19 do not develop respiratory complications. Understanding the innate immune response to SARS-CoV-may uncover why most infected individuals experience mild symptoms, and inform a preventive approach to COVID-19 pneumonia in the future.


Asunto(s)
Infecciones por Coronavirus/diagnóstico , Granulocitos/metabolismo , Monocitos/metabolismo , Neumonía Viral/diagnóstico , Adulto , Betacoronavirus , Antígeno CD11b/metabolismo , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Citocinas/metabolismo , Humanos , Inmunidad Innata , Memoria Inmunológica , Células Asesinas Naturales/inmunología , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/metabolismo , SARS-CoV-2
9.
Pharmacol Res ; 159: 105030, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-602037

RESUMEN

A complex intracellular signaling governs different cellular responses in inflammation. Extracellular stimuli are sensed, amplified, and transduced through a dynamic cellular network of messengers converting the first signal into a proper response: production of specific mediators, cell activation, survival, or death. Several overlapping pathways are coordinated to ensure specific and timely induction of inflammation to neutralize potential harms to the tissue. Ideally, the inflammatory response must be controlled and self-limited. Resolution of inflammation is an active process that culminates with termination of inflammation and restoration of tissue homeostasis. Comparably to the onset of inflammation, resolution responses are triggered by coordinated intracellular signaling pathways that transduce the message to the nucleus. However, the key messengers and pathways involved in signaling transduction for resolution are still poorly understood in comparison to the inflammatory network. cAMP has long been recognized as an inducer of anti-inflammatory responses and cAMP-dependent pathways have been extensively exploited pharmacologically to treat inflammatory diseases. Recently, cAMP has been pointed out as coordinator of key steps of resolution of inflammation. Here, we summarize the evidence for the role of cAMP at inducing important features of resolution of inflammation.


Asunto(s)
AMP Cíclico/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Sistemas de Mensajero Secundario , Animales , Apoptosis , Quimiotaxis de Leucocito , Granulocitos/inmunología , Granulocitos/metabolismo , Granulocitos/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Fagocitosis , Fenotipo
10.
Pharmacol Res ; 157: 104881, 2020 07.
Artículo en Inglés | MEDLINE | ID: covidwho-165166

RESUMEN

The average respiration rate for an adult is 12-20 breaths per minute, which constantly exposes the lungs to allergens and harmful particles. As a result, respiratory diseases, which includes asthma, chronic obstructive pulmonary disease (COPD) and acute lower respiratory tract infections (LTRI), are a major cause of death worldwide. Although asthma, COPD and LTRI are distinctly different diseases with separate mechanisms of disease progression, they do share a common feature - airway inflammation with intense recruitment and activation of granulocytes and mast cells. Neutrophils, eosinophils, basophils, and mast cells are crucial players in host defense against pathogens and maintenance of lung homeostasis. Upon contact with harmful particles, part of the pulmonary defense mechanism is to recruit these cells into the airways. Despite their protective nature, overactivation or accumulation of granulocytes and mast cells in the lungs results in unwanted chronic airway inflammation and damage. As such, understanding the bright and the dark side of these leukocytes in lung physiology paves the way for the development of therapies targeting this important mechanism of disease. Here we discuss the role of granulocytes in respiratory diseases and summarize therapeutic strategies focused on granulocyte recruitment and activation in the lungs.


Asunto(s)
Granulocitos/efectos de los fármacos , Fármacos del Sistema Respiratorio/uso terapéutico , Sistema Respiratorio/efectos de los fármacos , Enfermedades Respiratorias/tratamiento farmacológico , Animales , Quimiotaxis de Leucocito/efectos de los fármacos , Granulocitos/inmunología , Granulocitos/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Terapia Molecular Dirigida , Fenotipo , Sistema Respiratorio/inmunología , Sistema Respiratorio/metabolismo , Sistema Respiratorio/fisiopatología , Fármacos del Sistema Respiratorio/efectos adversos , Enfermedades Respiratorias/inmunología , Enfermedades Respiratorias/metabolismo , Enfermedades Respiratorias/fisiopatología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA